Generalization Bounds for Ordinal Regression Algorithms via Strong and Weak Stability

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalization Bounds for Some Ordinal Regression Algorithms

The problem of ordinal regression, in which the goal is to learn a rule to predict labels from a discrete but ordered set, has gained considerable attention in machine learning in recent years. We study generalization properties of algorithms for this problem. We start with the most basic algorithms that work by learning a real-valued function in a regression framework and then rounding off a p...

متن کامل

Generalization Bounds for Ranking Algorithms via Algorithmic Stability

The problem of ranking, in which the goal is to learn a real-valued ranking function that induces a ranking or ordering over an instance space, has recently gained much attention in machine learning. We study generalization properties of ranking algorithms using the notion of algorithmic stability; in particular, we derive generalization bounds for ranking algorithms that have good stability pr...

متن کامل

Stability Analysis and Learning Bounds for Transductive Regression Algorithms

This paper uses the notion of algorithmic stability to derive novel generalization bounds for several families of transductive regression algorithms, both by using convexity and closed-form solutions. Our analysis helps compare the stability of these algorithms. It also shows that a number of widely used transductive regression algorithms are in fact unstable. Finally, it reports the results of...

متن کامل

Ordinal Regression via Manifold Learning

Ordinal regression is an important research topic in machine learning. It aims to automatically determine the implied rating of a data item on a fixed, discrete rating scale. In this paper, we present a novel ordinal regression approach via manifold learning, which is capable of uncovering the embedded nonlinear structure of the data set according to the observations in the highdimensional feat...

متن کامل

Generalization Bounds for Linear Learning Algorithms

We study generalization properties of linear learning algorithms and develop a data dependent approach that is used to derive generalization bounds that depend on the margin distribution. Our method makes use of random projection techniques to allow the use of existing VC dimension bounds in the effective, lower, dimension of the data. Comparisons with existing generalization bound show that ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energy Procedia

سال: 2011

ISSN: 1876-6102

DOI: 10.1016/j.egypro.2011.11.499